MySQL 百万级数据库优化方案

建议优化顺序

知乎大神给的优化顺序如下:

  1. 优化 SQL 和索引;
  2. 加入缓存,如 Memcached,Redis等;
  3. 主从复制或者主主复制,进行读写分离;
  4. MySQL 自带分区表,sql 语句针对分区表做优化(查询条件上带上分区条件的列),将查询定位到少量的分区上,避免扫描全部分区;
  5. 垂直分区,根据模块耦合度将大系统切分为小系统;
  6. 水平分区,此操作改动的较多,涉及到表结构的变动,逆范式,sharding等。

优化方案汇总

  1. 对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
  2. 应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描。

    select id from t where num is null;
    最好不要给数据库留NULL,尽可能的使用 NOT NULL填充数据库.
    备注、描述、评论之类的可以设置为 NULL,其他的,最好不要使用NULL。
    不要以为 NULL 不需要空间,比如:char(100) 型,在字段建立时,空间就固定了, 不管是否插入值(NULL也包含在内),都是占用 100个字符的空间的,如果是varchar这样的变长字段, null 不占用空间。
    可以在num上设置默认值0,确保表中num列没有null值。

  3. 应尽量避免在 where 子句中使用 != 或 <> 操作符,否则将引擎放弃使用索引而进行全表扫描。
  4. OR 原则应尽量避免在 where 子句中使用 or 来连接条件,如果一个字段有索引,一个字段没有索引,将导致引擎放弃使用索引而进行全表扫描。

    select id from t where num=10 or Name = 'admin'
    改进方法:
    select id from t where num = 10
    union all
    select id from t where Name = 'admin'
    联合查询 union allunion更有效,因为union all只是简单的将两个结果集进行合并,并且不会去重,union 默认带distinct属性,会对筛选后的结果去重,并且按照字段的顺序排序;

  5. in 和 not in 也要慎用,否则会导致全表扫描。

select id from t where num in(1,2,3);
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3;
很多时候用 exists 代替 in 是一个好的选择:
select num from a where num in(select num from b);
用下面的语句替换:
select num from a where exists(select 1 from b where num=a.num);

  1. 下面的查询也将导致全表扫描,若要提高效率,可以考虑全文检索。

    select id from t where name like '%abc%'

  2. 如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:

    select id from t where num = @num;
    可以改为强制查询使用索引:
    select id from t with(index(索引名)) where num = @num;

  3. 字段独立原则 应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:

    select id from t where num/2 = 100;
    应改为:
    select id from t where num = 100*2;

  4. 应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:

    select id from t where substring(name,1,3) = 'abc'; -– name以abc开头的id
    select id from t where datediff(day,createdate,'2005-11-30') = 0 ; -– '2005-11-30' 生成的id
    应改为:
    select id from t where name like 'abc%';
    select id from t where createdate >= '2005-11-30' and createdate < '2005-12-1';

  5. 不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用索引。

  6. 左原则 在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件时才能保证系统使用该索引,否则该索引将不会被使用,并且应尽可能的让字段顺序与索引顺序相一致。

  7. 不要写一些没有意义的查询,如需要生成一个空表结构:

    select col1,col2 into #t from t where 1=0;
    这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
    create table #t(…);

  8. Update 语句,如果只更改1、2个字段,不要Update全部字段,否则频繁调用会引起明显的性能消耗,同时带来大量日志。

  9. 对于多张大数据量(这里几百条就算大了)的表JOIN,要先分页再JOIN,否则逻辑读会很高,性能很差。

  10. select count(*) from table;这样不带任何条件的count会引起全表扫描,并且没有任何业务意义,是一定要杜绝的。

  11. 索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过6个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。

  12. 应尽可能的避免更新 clustered 索引数据列,因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。

  13. 尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言只需要比较一次就够了。

  14. 任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。

  15. 尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。

  16. 避免频繁创建和删除临时表,以减少系统表资源的消耗。临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用表中的某个数据集时。但是,对于一次性事件, 最好使用导出表

  17. 在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先create table,然后insert。

  18. 如果使用到了临时表,在存储过程的最后务必将所有的临时表显式删除,先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。

DROP TABLE 用于删除表(表的结构、属性以及索引也会被删除);
TRUNCATE TABLE DDL语言,无法回退,默认所有的表内容都删除,删除速度比delete快,操作不触发trigger,不能用于参与了索引视图的表。;
DELETE DML语言,可以回退,可以有条件的删除,每次删除一行,并在事务日志中为所删除的每行记录一项;

  1. 尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过1万行,那么就应该考虑改写。
  2. 使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更有效。
  3. 与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时 间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
  4. 在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF 。无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
  5. 尽量避免大事务操作,提高系统并发能力。
  6. 尽量避免向客户端返回大数据量,若数据量过大,应该考虑相应需求是否合理。

友情链接


坚持原创技术分享,您的支持将鼓励我继续创作!